
Compiler Analysis Techniques
for Ada and OpenMP

Sara Royuela 1,3, Xavier Martorell 1,3, Eduardo Quiñones 3, Luis Miguel Pinho 2

1 2 3

Safe Parallelism

Challenges in safety-critical systems

‒ Need for performance

Current safety-critical real-time
systems require computational
power beyond simple single-core
architectures.

Introduction 2

Challenges in safety-critical systems

‒ Need for performance

Current safety-critical real-time
systems require computational
power beyond simple single-core
architectures.

Introduction 3

‒ Complexities of Parallel heterogeneous architectures

Parallelism

Race conditions
Deadlocks and

livelocks
Starvation

Heterogeneity

Different ISAs
Different

memory views
Different micro-

architectures

How to cope with such complexity?

Introduction 4

Parallel programming models

TBB

How to cope with such complexity?

Introduction 5

Parallel programming models

TBB

How to cope with such complexity?

Introduction 6

Parallel programming models

20 years of development gather the benefits of other languages

– Delivers performance comparable with Intel TBB, CUDA, OpenCL and MPI

– Offers robustness without sacrificing performance compared to Pthreads

– Eases debugging by enabling trivial single-threaded compilation

The latest specification meets the characteristics of

heterogeneous architectures

– Accelerator model for improved performance/power consumption

– Allows expressing fine grain, both structured and unstructured, parallelism

– Implemented by several chip (TI Keystone, Kalray MPPA) and compiler
vendors (GNU, Intel, IBM)

TBB

How to cope with such complexity?

Introduction 7

Parallel programming models

20 years of development gather the benefits of other languages

– Delivers performance comparable with Intel TBB, CUDA, OpenCL and MPI

– Offers robustness without sacrificing performance compared to Pthreads

– Eases debugging by enabling trivial single-threaded compilation

The latest specification meets the characteristics of

heterogeneous architectures

– Accelerator model for improved performance/power consumption

– Allows expressing fine grain, both structured and unstructured, parallelism

– Implemented by several chip (TI Keystone, Kalray MPPA) and compiler
vendors (GNU, Intel, IBM)

TBB

What is OpenMP and
how far is it from the safety-critical domain?

Background 8

Introduction to OpenMP

Background 9

‒ Forms of parallelism:

– Thread model: direct management of threads (structured)

– Tasking model: tasks as an abstraction of threads (structured and unstructured)

Introduction to OpenMP

Background 10

‒ Forms of parallelism:

– Thread model: direct management of threads (structured)

– Tasking model: tasks as an abstraction of threads (structured and unstructured)

‒ Based on user directives and clauses for:
‒ Spawning parallelism: parallel

‒ Distributing parallelism: task, taskloop

‒ Synchronization: barrier, taskwait , depend

‒ Driving execution: untied, priority, taskyield, …

Introduction to OpenMP

Background 11

‒ Forms of parallelism:

– Thread model: direct management of threads (structured)

– Tasking model: tasks as an abstraction of threads (structured and unstructured)

‒ Based on user directives and clauses for:
‒ Spawning parallelism: parallel

‒ Distributing parallelism: task, taskloop

‒ Synchronization: barrier, taskwait , depend

‒ Driving execution: untied, priority, taskyield, …

void matmul(int N, float A[N][N], float B[N][N], float C[N][N])

{

 #pragma omp parallel num_threads(4)

 #pragma omp master

 for (int i=0; i<N; i++)

 for (int j=0; j<N; j++)

 for (int k=0; k<N; k++)

 #pragma omp task depend(in:A[i][k]) depend(in: B[k][j])\

 depend(inout:C[i][j])

 C[i][j] += A[i][k] * B[k][j];

}

Introduction to OpenMP

Background 12

‒ Forms of parallelism:

– Thread model: direct management of threads (structured)

– Tasking model: tasks as an abstraction of threads (structured and unstructured)

‒ Based on user directives and clauses for:
‒ Spawning parallelism: parallel

‒ Distributing parallelism: task, taskloop

‒ Synchronization: barrier, taskwait , depend

‒ Driving execution: untied, priority, taskyield, …

void matmul(int N, float A[N][N], float B[N][N], float C[N][N])

{

 #pragma omp parallel num_threads(4)

 #pragma omp master

 for (int i=0; i<N; i++)

 for (int j=0; j<N; j++)

 for (int k=0; k<N; k++)

 #pragma omp task depend(in:A[i][k]) depend(in: B[k][j])\

 depend(inout:C[i][j])

 C[i][j] += A[i][k] * B[k][j];

}

ready_queue

OpenMP runtime

TDG

Safety-critical OpenMP: where is the problem?

Background 13

OpenMP 4.5 (API, page 1)

‒ OpenMP-compliant implementations are not required to check

‒ for data dependencies, data conflicts, race conditions, or deadlocks, (…)

‒ for code sequences that cause a program to be classified as non-conforming

‒ Application developers are responsible for correctly using the OpenMP API to produce
a conforming program

Safety-critical OpenMP: requirements

Background 14

OpenMP 4.5 (API, page 1)

‒ OpenMP-compliant implementations are not required to check

‒ for data dependencies, data conflicts, race conditions, or deadlocks, (…)

‒ for code sequences that cause a program to be classified as non-conforming

‒ Application developers are responsible for correctly using the OpenMP API to produce
a conforming program

Functional Safety Time Safety

What to achieve
Reliability: do as expected
Resiliency: recover from errors

Predictability: analyzable
Feasibility: fulfill deadlines

How to achieve it
Programming model restrictions
Compiler analysis
Runtime mechanisms

WCET analysis
Schedulability analysis

Safety-critical OpenMP: requirements

Background 15

OpenMP 4.5 (API, page 1)

‒ OpenMP-compliant implementations are not required to check

‒ for data dependencies, data conflicts, race conditions, or deadlocks, (…)

‒ for code sequences that cause a program to be classified as non-conforming

‒ Application developers are responsible for correctly using the OpenMP API to produce
a conforming program

Functional Safety Time Safety

What to achieve
Reliability: do as expected
Resiliency: recover from errors

Predictability: analyzable
Feasibility: fulfill deadlines

How to achieve it
Programming model restrictions
Compiler analysis
Runtime mechanisms

WCET analysis
Schedulability analysis

Solutions for a safety-critical OpenMP

Related work 16

Compiler

‒ Force implementations to detect:

‒ race conditions

‒ deadlocks

‒ non-conforming sequences

S. Royuela, et al., “A functional safety OpenMP* for critical real-time embedded systems”, IWOMP 2017

Solutions for a safety-critical OpenMP

Related work 17

Compiler

‒ Force implementations to detect:

‒ race conditions

‒ deadlocks

‒ non-conforming sequences

Runtime

‒ Avoid unexpected termination defining default values for
unexpected argument passing

‒ Allow serialization when parallelism is not well defined
(dependence clauses)

S. Royuela, et al., “A functional safety OpenMP* for critical real-time embedded systems”, IWOMP 2017

Solutions for a safety-critical OpenMP

Related work 18

Compiler

‒ Force implementations to detect:

‒ race conditions

‒ deadlocks

‒ non-conforming sequences

Runtime

‒ Avoid unexpected termination defining default values for
unexpected argument passing

‒ Allow serialization when parallelism is not well defined
(dependence clauses)

Programming
model

‒ Use directives to always allow whole program analysis.

‒ Forbid uncheckable features (flushes with arguments,
priorities, etc.)

‒ Introduce error handling mechanisms

S. Royuela, et al., “A functional safety OpenMP* for critical real-time embedded systems”, IWOMP 2017

Parallelism in Ada202X

Background 19

Ada: concurrency and parallelism now

‒ Ada concurrent model integrated at base language level

‒ Tasking facilities for exposing concurrency at coarse grain

‒ Synchronization mechanisms: protected objects, rendezvous

Related work 20

Ada: concurrency and parallelism now

‒ Ada concurrent model integrated at base language level

‒ Tasking facilities for exposing concurrency at coarse grain

‒ Synchronization mechanisms: protected objects, rendezvous

‒ Ada parallel model to be included in Ada202X

‒ Tasklets for exposing parallelism at fine grain

‒ Support for structured parallelism

‒ Does not allow blocking operations within parallel regions

‒ Under implementation (e.g., AdaCore)

Related work 21

Parallel blocks Parallel loops

parallel do

 handled_sequence_of_statements

and

 handled_sequence_of_statements

{and

 handled_sequence_of_statements}

end do;

parallel

for I in LB..UB loop

 sequence_of_statements

end loop;

OpenMP to implement the tasklet model

‒ OpenMP mimics the tasklet model behavior at all levels:

‒ Forms of parallelism: parallel blocks and parallel loops

‒ Execution model: run-to-completion

‒ Memory model: relaxed consistency memory model

‒ Progression model: immediate, eventual and limited

Related work 22

S. Royuela, X. Martorell, E. Quiñones, and L.M. Pinho, “OpenMP tasking model for Ada: safety and correctness”, AE 2017
S. Royuela, L.M. Pinho, and E. Quiñones, “Converging Safety and High-performance Domains: Integrating OpenMP into Ada”, DATE 2018

OpenMP to implement the tasklet model

‒ OpenMP mimics the tasklet model behavior at all levels:

‒ Forms of parallelism: parallel blocks and parallel loops

‒ Execution model: run-to-completion

‒ Memory model: relaxed consistency memory model

‒ Progression model: immediate, eventual and limited

‒ OpenMP offers more flexibility

Related work 23

Parallel blocks Parallel loops

Tasklet OpenMP Tasklet OpenMP

parallel code
sequential code

parallel loop 1
parallel loop 2

S. Royuela, X. Martorell, E. Quiñones, and L.M. Pinho, “OpenMP tasking model for Ada: safety and correctness”, AE 2017
S. Royuela, L.M. Pinho, and E. Quiñones, “Converging Safety and High-performance Domains: Integrating OpenMP into Ada”, DATE 2018

OpenMP to further exploit parallelism in Ada

Related work 24

Matrix (coarse grain synchronization)

Perfect
speed-up

OpenMP to further exploit parallelism in Ada

Related work 25

Matrix (coarse grain synchronization)

Perfect
speed-up

LU (fine grain synchronization)

Memory boundaries
NUMA effect Great speed-up

enhancement

OpenMP to further exploit parallelism in Ada

Related work 26

LU (fine grain synchronization)

Memory boundaries
NUMA effect Great speed-up

enhancement

Cholesky (unstructured parallelism)

Matrix (coarse grain synchronization)

Perfect
speed-up

Analyze Ada/OpenMP programs
for data-race detection

Background 27

Compiler analysis for Ada/OpenMP programs

Proposal 28

* S. Royuela, A. Duran, C. Liao and D.J. Quinlan, “Auto-scoping for OpenMP tasks”, IWOMP12.
 S. Royuela, A. Duran and X. Martorell, “Compiler automatic discovery of OmpSs tasks dependences”, LCPC12.

Currently:

‒ Ada lacks static analyses for data-race detection

‒ OpenMP correctness* techniques do not consider concurrency

Compiler analysis for Ada/OpenMP programs

Proposal 29

concurrent
block

parallel
block

parallel
block

parallel
block

* S. Royuela, A. Duran, C. Liao and D.J. Quinlan, “Auto-scoping for OpenMP tasks”, IWOMP12.
 S. Royuela, A. Duran and X. Martorell, “Compiler automatic discovery of OmpSs tasks dependences”, LCPC12.

Currently:

‒ Ada lacks static analyses for data-race detection

‒ OpenMP correctness* techniques do not consider concurrency

Solution:

‒ Extend current OpenMP techniques*

Compiler analysis for Ada/OpenMP programs

Proposal 30

concurrent
block

parallel
block

parallel
block

parallel
block

* S. Royuela, A. Duran, C. Liao and D.J. Quinlan, “Auto-scoping for OpenMP tasks”, IWOMP12.
 S. Royuela, A. Duran and X. Martorell, “Compiler automatic discovery of OmpSs tasks dependences”, LCPC12.

Currently:

‒ Ada lacks static analyses for data-race detection

‒ OpenMP correctness* techniques do not consider concurrency

Solution:

‒ Extend current OpenMP techniques*

The Ada Ravenscar profile eases the generation of blocks of concurrency because
dynamic task allocation and task termination are forbidden

Solve race conditions in Ada/OpenMP

Proposal 31

1. Build an interprocedural PCFG

2. Recognize the different blocks of concurrency

3. Apply the following solutions if race conditions may arise:

Race condition between Solution

Ada tasks

Ada mechanisms: protected object Ada and OpenMP tasks

OpenMP tasks

different binding regions1

same binding region1

OpenMP mechanisms2:

‒ Synchronization constructs and clauses:
taskwait, barrier, depend

‒ Mutual exclusion constructs:
critical, atomic

‒ Data-sharing attributes:
private, firstprivate, lastprivate

1 Binding region: the enclosing region that determines the execution
context and limits the scope of the effects of the bound region.

2 S. Royuela et al., “Compiler Analysis for OpenMP Tasks Correctness”, CF2015.

Ravenscar application (HRT-HOOD)

Evaluation 32

Extracted from: Burns, B. Dobbing and T. Vardanega,
“Guide for the use of the Ada Ravenscar Profile in
high integrity systems”, 2003.

REGULAR PRODUCER
7 C

ON CALL PRODUCER
5 S

REQUEST BUFFER

Deposit

Extract

9 Pr

EXTERNAL EVENT SERVER
11 I

EVENT_QUEUE
Handler

Wait

Signal

Pr

PRODUCTION WORKLOAD

Small_Whetstone

P

ACTIVATION LOG READER
3 S

EVENT_QUEUE
Interrupt_Simulator

‘Last I

ACTIVATION LOG

Read

Write

Pr ACTIVATION LOG READER

Signal

Wait

P

AUXILIARY

Due_Activation

Check_Due

P

ON CALL PRODUCER

Start

P

ACTIVATION MANAGER

Synchronize_Activation_Cyclic

Synchronize_Activation_Sporadic

P

Task

Protected Object

Function/Procedure

PACKAGE NAME
Subprogram name

priority Type

P Passive object

Pr Protected object

S Sporadic object

C Cyclic object

I Interrupt sporadic object

Ravenscar application (HRT-HOOD)

Extracted from: Burns, B. Dobbing and T. Vardanega,
“Guide for the use of the Ada Ravenscar Profile in
high integrity systems”, 2003.

REGULAR PRODUCER
7 C

ON CALL PRODUCER
5 S

REQUEST BUFFER

Deposit

Extract

9 Pr

EXTERNAL EVENT SERVER
11 I

EVENT_QUEUE
Handler

Wait

Signal

Pr

PRODUCTION WORKLOAD

Small_Whetstone

P

ACTIVATION LOG READER
3 S

EVENT_QUEUE
Interrupt_Simulator

‘Last I

ACTIVATION LOG

Read

Write

Pr ACTIVATION LOG READER

Signal

Wait

P

AUXILIARY

Due_Activation

Check_Due

P

ON CALL PRODUCER

Start

P

ACTIVATION MANAGER

Synchronize_Activation_Cyclic

Synchronize_Activation_Sporadic

P

Task

Protected Object

Function/Procedure

PACKAGE NAME
Subprogram name

priority Type

P Passive object

Pr Protected object

S Sporadic object

C Cyclic object

I Interrupt sporadic object

Evaluation 33

Evaluation: Ravenscar application (HRT-HOOD)

Evaluation 34

Extracted from: Burns, B. Dobbing and T. Vardanega,
“Guide for the use of the Ada Ravenscar Profile in
high integrity systems”, 2003.

REGULAR PRODUCER
7 C

ON CALL PRODUCER
5 S

REQUEST BUFFER

Deposit

Extract

9 Pr

EXTERNAL EVENT SERVER
11 I

EVENT_QUEUE
Handler

Wait

Signal

Pr

PRODUCTION WORKLOAD

Small_Whetstone

P

ACTIVATION LOG READER
3 S

EVENT_QUEUE
Interrupt_Simulator

‘Last I

ACTIVATION LOG

Read

Write

Pr ACTIVATION LOG READER

Signal

Wait

P

AUXILIARY

Due_Activation

Check_Due

P

ON CALL PRODUCER

Start

P

ACTIVATION MANAGER

Synchronize_Activation_Cyclic

Synchronize_Activation_Sporadic

P

Task

Protected Object

Function/Procedure

PACKAGE NAME
Subprogram name

priority Type

P Passive object

Pr Protected object

S Sporadic object

C Cyclic object

I Interrupt sporadic object

package body Production_Workload is
 type Dim is range 1..512;

 type M is array (Dim, Dim) of Float;

 M_A, M_B, M_C: M;

 procedure Read_Sensor_A is

 begin

 pragma OMP (parallel);

 pragma OMP (single);

 pragma OMP (taskloop);

 for I in Dim loop

 for J in Dim loop

 M_A(I, J) := sensor(1, I, J);

 end loop;

 end loop;

 end Read_Sensor_A;

 procedure Read_Sensor_B is

 begin

 pragma OMP (parallel);

 pragma OMP (single);

 pragma OMP (taskloop);

 for I in Dim loop

 for J in Dim loop

 M_B(I, J) := sensor(2, I, J);

 end loop;

 end loop;

 end Read_Sensor_B;

 procedure Fuse_Sensors is

 begin

 pragma OMP (parallel);

 pragma OMP (single);

 pragma OMP (taskloop);

 for I in Dim loop

 for J in Dim loop

 M_C(I, J) := M_A(I, J)

 + M_B(I, J);

 end loop;

 end loop;

 end Fuse Sensors;

 procedure Small_Whetstone

 (Workload:Positive) is

 begin

 case Workload is

 when 1 => Read_Sensor_A;

 when 2 => Read_Sensor_B;

 when 3 => Fuse_Sensors;

 when others => null;

 end case;

 end Small_Whetstone;

end Production_Workload;

Ravenscar application (PCFG)

Evaluation 35
Manually tested!
Ongoing implementation

2
 b

lo
ck

s
o

f
co

n
cu

rr
en

cy

SHARED OBJECT

Read

Write

Read/Write

Ravenscar application (PCFG)

Evaluation 36
Manually tested!
Ongoing implementation

2
 b

lo
ck

s
o

f
co

n
cu

rr
en

cy

SHARED OBJECT

Read

Write

Read/Write

Ravenscar application (PCFG)

Evaluation 37

SHARED OBJECT

Read

Write

Read/Write

Discussion 38

Conclusions

‒ Ada moves towards introducing fine-grain mechanisms for
parallel execution

‒ The tasklet model covers some important aspects but has
several limitations that may be overcame by OpenMP

‒ Mixing Ada with OpenMP introduces complexities for static
analysis because it mixes concurrency with parallelism

‒ Ada lacks mechanisms for data-race detection and OpenMP
mechanisms only consider parallelism

‒ OpenMP mechanisms can be used by properly representing
concurrency in the PCFG

‒ Non-Ravenscar applications can be tackled by further enriching
the PCFG

Compiler Analysis Techniques
for Ada and OpenMP

Reach us at:
 Sara Royuela sara.royuela@bsc.es
 Eduardo Quiñones eduardo.quinones@bsc.es

 Luis Miguel Pinho lmp@isep.ipp.pt

Safe Parallelism

