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‒ Complexities of Parallel heterogeneous architectures 

Parallelism 

Race conditions 
Deadlocks and 

livelocks 
Starvation 

Heterogeneity 

Different ISAs 
Different 

memory views 
Different micro-

architectures 
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Parallel programming models 

20 years of development gather the benefits of other languages 

– Delivers performance comparable with Intel TBB,  CUDA, OpenCL and MPI 

– Offers robustness without sacrificing performance compared to Pthreads 

– Eases debugging by enabling trivial single-threaded compilation 

The latest specification meets the characteristics of  

heterogeneous architectures 

– Accelerator model for improved performance/power consumption 

– Allows expressing fine grain, both structured and unstructured, parallelism 

– Implemented by several chip (TI Keystone, Kalray MPPA) and compiler 
vendors (GNU, Intel, IBM) 
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‒ Driving execution: untied,  priority, taskyield, … 

void matmul(int N, float A[N][N], float B[N][N], float C[N][N]) 

{ 

  #pragma omp parallel num_threads(4) 

  #pragma omp master 

  for (int i=0; i<N; i++) 

    for (int j=0; j<N; j++) 

      for (int k=0; k<N; k++) 

        #pragma omp task depend(in:A[i][k]) depend(in: B[k][j])\ 

                         depend(inout:C[i][j]) 

        C[i][j] += A[i][k] * B[k][j]; 

} 
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– Tasking model: tasks as an abstraction of threads (structured and unstructured) 

‒ Based on user directives and clauses for: 
‒ Spawning parallelism: parallel 
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‒ Driving execution: untied,  priority, taskyield, … 

void matmul(int N, float A[N][N], float B[N][N], float C[N][N]) 

{ 

  #pragma omp parallel num_threads(4) 

  #pragma omp master 

  for (int i=0; i<N; i++) 
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Safety-critical OpenMP: where is the problem? 

Background 13 

OpenMP 4.5 (API, page 1) 

‒ OpenMP-compliant implementations are not required to check 

‒ for data dependencies, data conflicts, race conditions, or deadlocks, (…) 

‒ for code sequences that cause a program to be classified as non-conforming 

‒ Application developers are responsible for correctly using the OpenMP API to produce 
a conforming program 
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Solutions for a safety-critical OpenMP 
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Compiler 

‒ Force implementations to detect: 

‒ race conditions 

‒ deadlocks 

‒ non-conforming sequences 

S. Royuela, et al., “A functional safety OpenMP* for critical real-time embedded systems”, IWOMP 2017 
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Compiler 

‒ Force implementations to detect: 

‒ race conditions 

‒ deadlocks 

‒ non-conforming sequences 

Runtime 

‒ Avoid unexpected termination  defining default values for 
unexpected argument passing 

‒ Allow serialization when parallelism is not well defined 
(dependence clauses) 

Programming 
model 

‒ Use directives to always allow whole program analysis. 

‒ Forbid uncheckable features (flushes with arguments, 
priorities, etc.) 

‒ Introduce error handling mechanisms 

S. Royuela, et al., “A functional safety OpenMP* for critical real-time embedded systems”, IWOMP 2017 
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Ada: concurrency and parallelism now 

‒ Ada concurrent model integrated at base language level 

‒ Tasking facilities for exposing concurrency at coarse grain 

‒ Synchronization mechanisms: protected objects, rendezvous 

‒ Ada parallel model to be included in Ada202X 

‒ Tasklets for exposing parallelism at fine grain 

‒ Support for structured parallelism 

‒ Does not allow blocking operations within parallel regions  

‒ Under implementation (e.g., AdaCore) 
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Parallel blocks Parallel loops 

parallel do 

    handled_sequence_of_statements 

and 

    handled_sequence_of_statements 

{and 

     handled_sequence_of_statements} 

end do; 

parallel 

for I in LB..UB loop 

    sequence_of_statements 

end loop; 



OpenMP to implement the tasklet model 

‒ OpenMP mimics the tasklet model behavior at all levels: 

‒ Forms of parallelism: parallel blocks and parallel loops 

‒ Execution model: run-to-completion 

‒ Memory model:  relaxed consistency memory model 

‒ Progression model: immediate, eventual and limited 
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‒ OpenMP mimics the tasklet model behavior at all levels: 

‒ Forms of parallelism: parallel blocks and parallel loops 

‒ Execution model: run-to-completion 

‒ Memory model:  relaxed consistency memory model 

‒ Progression model: immediate, eventual and limited 

‒ OpenMP offers more flexibility 

Related work 23 

Parallel blocks Parallel loops 

Tasklet OpenMP Tasklet OpenMP 

parallel code 
sequential code 

parallel loop 1 
parallel loop 2 

S. Royuela, X. Martorell, E. Quiñones, and L.M. Pinho, “OpenMP tasking model for Ada: safety and correctness”, AE 2017 
S. Royuela, L.M. Pinho, and E. Quiñones, “Converging Safety and High-performance Domains: Integrating OpenMP into Ada”, DATE 2018 
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LU (fine grain synchronization) 

Memory boundaries 
NUMA effect Great speed-up 

enhancement 

Cholesky (unstructured parallelism) 

Matrix (coarse grain synchronization) 

Perfect 
speed-up 



Analyze Ada/OpenMP programs 
for data-race detection 
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Compiler analysis for Ada/OpenMP programs 

Proposal 28 

* S. Royuela, A. Duran, C. Liao and D.J. Quinlan, “Auto-scoping for OpenMP tasks”, IWOMP12. 
  S. Royuela, A. Duran and X. Martorell, “Compiler automatic discovery of OmpSs tasks dependences”, LCPC12. 

Currently: 

‒ Ada lacks static analyses for data-race detection 

‒ OpenMP correctness* techniques do not consider concurrency 
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concurrent 
block 

parallel 
block 

parallel 
block 

parallel 
block 

* S. Royuela, A. Duran, C. Liao and D.J. Quinlan, “Auto-scoping for OpenMP tasks”, IWOMP12. 
  S. Royuela, A. Duran and X. Martorell, “Compiler automatic discovery of OmpSs tasks dependences”, LCPC12. 

Currently: 

‒ Ada lacks static analyses for data-race detection 

‒ OpenMP correctness* techniques do not consider concurrency 

Solution:  

‒ Extend current OpenMP techniques* 

The Ada Ravenscar profile eases the generation of blocks of concurrency because 
dynamic task allocation and task termination are forbidden 



Solve race conditions in Ada/OpenMP 

Proposal 31 

1. Build an interprocedural PCFG 

2. Recognize the different blocks of concurrency 

3. Apply the following solutions if race conditions may arise: 

Race condition between Solution 

Ada tasks 

Ada mechanisms: protected object Ada and OpenMP tasks 

OpenMP tasks 

different binding regions1 

same binding region1 

OpenMP mechanisms2: 

‒ Synchronization constructs and clauses: 
taskwait, barrier, depend 

‒ Mutual exclusion constructs: 
critical, atomic 

‒ Data-sharing attributes: 
private, firstprivate, lastprivate 

1 Binding region: the enclosing region that determines the execution 
context and limits the scope of the effects of the bound region. 

2 S. Royuela et al., “Compiler Analysis for OpenMP Tasks Correctness”, CF2015. 



Ravenscar application (HRT-HOOD) 

Evaluation 32 

Extracted from: Burns, B. Dobbing and T. Vardanega, 
“Guide for the use of the Ada Ravenscar Profile in 
high integrity systems”, 2003. 
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Extracted from: Burns, B. Dobbing and T. Vardanega, 
“Guide for the use of the Ada Ravenscar Profile in 
high integrity systems”, 2003. 
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package body Production_Workload is 
   type Dim is range 1..512; 

   type M is array (Dim, Dim) of Float; 

   M_A, M_B, M_C: M; 

 

   procedure Read_Sensor_A is 

   begin 

      pragma OMP (parallel); 

      pragma OMP (single); 

      pragma OMP (taskloop); 

      for I in Dim loop 

         for J in Dim loop 

            M_A(I, J) := sensor(1, I, J); 

         end loop; 

      end loop; 

   end Read_Sensor_A; 

 

 procedure Read_Sensor_B is 

   begin 

      pragma OMP (parallel); 

      pragma OMP (single); 

      pragma OMP (taskloop); 

      for I in Dim loop 

         for J in Dim loop 

            M_B(I, J) := sensor(2, I, J); 

         end loop; 

      end loop; 

   end Read_Sensor_B; 

   procedure Fuse_Sensors is 

   begin 

      pragma OMP (parallel); 

      pragma OMP (single); 

      pragma OMP (taskloop); 

      for I in Dim loop 

         for J in Dim loop 

            M_C(I, J) := M_A(I, J) 

                       + M_B(I, J); 

         end loop; 

      end loop; 

   end Fuse Sensors; 

 

   procedure Small_Whetstone 

       (Workload:Positive) is 

   begin 

      case Workload is 

         when 1 => Read_Sensor_A; 

         when 2 => Read_Sensor_B; 

         when 3 => Fuse_Sensors; 

         when others => null; 

      end case; 

   end Small_Whetstone; 

 

end Production_Workload; 
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Evaluation 35 
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Ravenscar application (PCFG) 
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Discussion 38 

Conclusions 

‒ Ada moves towards introducing fine-grain mechanisms for 
parallel execution 

‒ The tasklet model covers some important aspects but has 
several limitations that may be overcame by OpenMP 

‒ Mixing Ada with OpenMP introduces complexities for static 
analysis because it mixes concurrency with parallelism 

‒ Ada lacks mechanisms for data-race detection and OpenMP 
mechanisms only consider parallelism 

‒ OpenMP mechanisms can be used by properly representing 
concurrency in the PCFG 

‒ Non-Ravenscar applications can be tackled by further enriching 
the PCFG  
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